NeurIPS22 Accepted Papers

Identify 4 unique clusters from the dataset of Arxiv titles and their abstracts

Embed
Clustering

Dataset

#

TEXT

1

On Kernel-Target Alignment. We describe a family of global optimization procedures that automatically decompose optimization problems into smaller loosely coupled problems, then combine the solutions of these with message passing algorithms. We show empirically that these methods excel in avoiding local minima and produce better solutions with fewer function evaluations than existing global optimization methods. To develop these methods, we introduce a notion of coupling between variables of optimization that generalizes the notion of coupling that arises from factoring functions into terms that involve small subsets of the variables. It therefore subsumes the notion of independence between random variables in statistics, sparseness of the Hessian in nonlinear optimization, and the generalized distributive law. Despite being more general, this notion of coupling is easier to verify empirically -- making structure estimation easy -- yet it allows us to migrate well-established inference methods on graphical models to the setting of global optimization.

2

On the Convergence of Prior-Guided Zeroth-Order Optimization Algorithms. Zeroth-order (ZO) optimization is widely used to handle challenging tasks, such as query-based black-box adversarial attacks and reinforcement learning. Various attempts have been made to integrate prior information into the gradient estimation procedure based on finite differences, with promising empirical results. However, their convergence properties are not well understood. This paper makes an attempt to fill up this gap by analyzing the convergence of prior-guided ZO algorithms under a greedy descent framework with various gradient estimators. We provide a convergence guarantee for the prior-guided random gradient-free (PRGF) algorithms. Moreover, to further accelerate over greedy descent methods, we present a new accelerated random search (ARS) algorithm that incorporates prior information, together with a convergence analysis. Finally, our theoretical results are confirmed by experiments on several numerical benchmarks as well as adversarial attacks.

3

Communication Complexity of Distributed Convex Learning and Optimization. We study the fundamental limits to communication-efficient distributed methods for convex learning and optimization, under different assumptions on the information available to individual machines, and the types of functions considered. We identify cases where existing algorithms are already worst-case optimal, as well as cases where room for further improvement is still possible. Among other things, our results indicate that without similarity between the local objective functions (due to statistical data similarity or otherwise) many communication rounds may be required, even if the machines have unbounded computational power.

4

Straggler Mitigation in Distributed Optimization Through Data Encoding. Slow running or straggler tasks can significantly reduce computation speed in distributed computation. Recently, coding-theory-inspired approaches have been applied to mitigate the effect of straggling, through embedding redundancy in certain linear computational steps of the optimization algorithm, thus completing the computation without waiting for the stragglers. In this paper, we propose an alternate approach where we embed the redundancy directly in the data itself, and allow the computation to proceed completely oblivious to encoding. We propose several encoding schemes, and demonstrate that popular batch algorithms, such as gradient descent and L-BFGS, applied in a coding-oblivious manner, deterministically achieve sample path linear convergence to an approximate solution of the original problem, using an arbitrarily varying subset of the nodes at each iteration. Moreover, this approximation can be controlled by the amount of redundancy and the number of nodes used in each iteration. We provide experimental results demonstrating the advantage of the approach over uncoded and data replication strategies.

5

Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods. We consider derivative-free algorithms for stochastic optimization problems that use only noisy function values rather than gradients, analyzing their finite-sample convergence rates. We show that if pairs of function values are available, algorithms that use gradient estimates based on random perturbations suffer a factor of at most $\sqrt{\dim}$ in convergence rate over traditional stochastic gradient methods, where $\dim$ is the dimension of the problem. We complement our algorithmic development with information-theoretic lower bounds on the minimax convergence rate of such problems, which show that our bounds are sharp with respect to all problem-dependent quantities: they cannot be improved by more than constant factors.

6

Efficient Pure Exploration in Adaptive Round model. In the adaptive setting, many multi-armed bandit applications allow the learner to adaptively draw samples and adjust sampling strategy in rounds. In many real applications, not only the query complexity but also the round complexity need to be optimized. In this paper, we study both PAC and exact top-$k$ arm identification problems and design efficient algorithms considering both round complexity and query complexity. For PAC problem, we achieve optimal query complexity and use only $O(\log_{\frac{k}{\delta}}^*(n))$ rounds, which matches the lower bound of round complexity, while most of existing works need $\Theta(\log \frac{n}{k})$ rounds. For exact top-$k$ arm identification, we improve the round complexity factor from $\log n$ to $\log_{\frac{1}{\delta}}^*(n)$, and achieve near optimal query complexity. In experiments, our algorithms conduct far fewer rounds, and outperform state of the art by orders of magnitude with respect to query cost.

7

On Top-k Selection in Multi-Armed Bandits and Hidden Bipartite Graphs. This paper discusses how to efficiently choose from $n$ unknowndistributions the $k$ ones whose means are the greatest by a certainmetric, up to a small relative error. We study the topic under twostandard settings---multi-armed bandits and hidden bipartitegraphs---which differ in the nature of the input distributions. In theformer setting, each distribution can be sampled (in the i.i.d.manner) an arbitrary number of times, whereas in the latter, eachdistribution is defined on a population of a finite size $m$ (andhence, is fully revealed after $m$ samples). For both settings, weprove lower bounds on the total number of samples needed, and proposeoptimal algorithms whose sample complexities match those lower bounds.

8

MaxGap Bandit: Adaptive Algorithms for Approximate Ranking. This paper studies the problem of adaptively sampling from K distributions (arms) in order to identify the largest gap between any two adjacent means. We call this the MaxGap-bandit problem. This problem arises naturally in approximate ranking, noisy sorting, outlier detection, and top-arm identification in bandits. The key novelty of the MaxGap bandit problem is that it aims to adaptively determine the natural partitioning of the distributions into a subset with larger means and a subset with smaller means, where the split is determined by the largest gap rather than a pre-specified rank or threshold. Estimating an arm’s gap requires sampling its neighboring arms in addition to itself, and this dependence results in a novel hardness parameter that characterizes the sample complexity of the problem. We propose elimination and UCB-style algorithms and show that they are minimax optimal. Our experiments show that the UCB-style algorithms require 6-8x fewer samples than non-adaptive sampling to achieve the same error.

9

A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond to important decisions about individual people (such as criminal recidivism prediction, lending, and sequential drug trials), exploration corresponds to explicitly sacrificing the well-being of one individual for the potential future benefit of others. In such settings, one might like to run a ``greedy'' algorithm, which always makes the optimal decision for the individuals at hand --- but doing this can result in a catastrophic failure to learn. In this paper, we consider the linear contextual bandit problem and revisit the performance of the greedy algorithm.

10

Identifying Outlier Arms in Multi-Armed Bandit. We study a novel problem lying at the intersection of two areas: multi-armed bandit and outlier detection. Multi-armed bandit is a useful tool to model the process of incrementally collecting data for multiple objects in a decision space. Outlier detection is a powerful method to narrow down the attention to a few objects after the data for them are collected. However, no one has studied how to detect outlier objects while incrementally collecting data for them, which is necessary when data collection is expensive. We formalize this problem as identifying outlier arms in a multi-armed bandit. We propose two sampling strategies with theoretical guarantee, and analyze their sampling efficiency. Our experimental results on both synthetic and real data show that our solution saves 70-99% of data collection cost from baseline while having nearly perfect accuracy.

11

Combinatorial Pure Exploration with Bottleneck Reward Function. In this paper, we study the Combinatorial Pure Exploration problem with the Bottleneck reward function (CPE-B) under the fixed-confidence (FC) and fixed-budget (FB) settings.In CPE-B, given a set of base arms and a collection of subsets of base arms (super arms) following a certain combinatorial constraint, a learner sequentially plays a base arm and observes its random reward, with the objective of finding the optimal super arm with the maximum bottleneck value, defined as the minimum expected reward of the base arms contained in the super arm.CPE-B captures a variety of practical scenarios such as network routing in communication networks, and its unique challenges fall on how to utilize the bottleneck property to save samples and achieve the statistical optimality. None of the existing CPE studies (most of them assume linear rewards) can be adapted to solve such challenges, and thus we develop brand-new techniques to handle them.For the FC setting, we propose novel algorithms with optimal sample complexity for a broad family of instances and establish a matching lower bound to demonstrate the optimality (within a logarithmic factor).For the FB setting, we design an algorithm which achieves the state-of-the-art error probability guarantee and is the first to run efficiently on fixed-budget path instances, compared to existing CPE algorithms. Our experimental results on the top-$k$, path and matching instances validate the empirical superiority of the proposed algorithms over their baselines.

12

CryptoNAS: Private Inference on a ReLU Budget. Machine learning as a service has given raise to privacy concerns surrounding clients' data and providers' models and has catalyzed research in private inference (PI): methods to process inferences without disclosing inputs. Recently, researchers have adapted cryptographic techniques to show PI is possible, however all solutions increase inference latency beyond practical limits. This paper makes the observation that existing models are ill-suited for PI and proposes a novel NAS method, named CryptoNAS, for finding and tailoring models to the needs of PI. The key insight is that in PI operator latency cost are inverted: non-linear operations (e.g., ReLU) dominate latency, while linear layers become effectively free. We develop the idea of a ReLU budget as a proxy for inference latency and use CryptoNAS to build models that maximize accuracy within a given budget. CryptoNAS improves accuracy by 3.4% and latency by 2.4x over the state-of-the-art.

13

Evaluating Efficient Performance Estimators of Neural Architectures. Conducting efficient performance estimations of neural architectures is a major challenge in neural architecture search (NAS). To reduce the architecture training costs in NAS, one-shot estimators (OSEs) amortize the architecture training costs by sharing the parameters of one supernet between all architectures. Recently, zero-shot estimators (ZSEs) that involve no training are proposed to further reduce the architecture evaluation cost. Despite the high efficiency of these estimators, the quality of such estimations has not been thoroughly studied. In this paper, we conduct an extensive and organized assessment of OSEs and ZSEs on five NAS benchmarks: NAS-Bench-101/201/301, and NDS ResNet/ResNeXt-A. Specifically, we employ a set of NAS-oriented criteria to study the behavior of OSEs and ZSEs, and reveal their biases and variances. After analyzing how and why the OSE estimations are unsatisfying, we explore how to mitigate the correlation gap of OSEs from three perspectives. Through our analysis, we give out suggestions for future application and development of efficient architecture performance estimators. Furthermore, the analysis framework proposed in our work could be utilized in future research to give a more comprehensive understanding of newly designed architecture performance estimators. The code is available at https://github.com/walkerning/aw_nas.

14

Discovering Neural Wirings. The success of neural networks has driven a shift in focus from feature engineering to architecture engineering. However, successful networks today are constructed using a small and manually defined set of building blocks. Even in methods of neural architecture search (NAS) the network connectivity patterns are largely constrained. In this work we propose a method for discovering neural wirings. We relax the typical notion of layers and instead enable channels to form connections independent of each other. This allows for a much larger space of possible networks. The wiring of our network is not fixed during training -- as we learn the network parameters we also learn the structure itself. Our experiments demonstrate that our learned connectivity outperforms hand engineered and randomly wired networks. By learning the connectivity of MobileNetV1we boost the ImageNet accuracy by 10% at ~41M FLOPs. Moreover, we show that our method generalizes to recurrent and continuous time networks. Our work may also be regarded as unifying core aspects of the neural architecture search problem with sparse neural network learning. As NAS becomes more fine grained, finding a good architecture is akin to finding a sparse subnetwork of the complete graph. Accordingly, DNW provides an effective mechanism for discovering sparse subnetworks of predefined architectures in a single training run. Though we only ever use a small percentage of the weights during the forward pass, we still play the so-called initialization lottery with a combinatorial number of subnetworks. Code and pretrained models are available at https://github.com/allenai/dnw while additional visualizations may be found at https://mitchellnw.github.io/blog/2019/dnw/.

15

Hierarchical Neural Architecture Search for Deep Stereo Matching. To reduce the human efforts in neural network design, Neural Architecture Search (NAS) has been applied with remarkable success to various high-level vision tasks such as classification and semantic segmentation. The underlying idea for the NAS algorithm is straightforward, namely, to allow the network the ability to choose among a set of operations (\eg convolution with different filter sizes), one is able to find an optimal architecture that is better adapted to the problem at hand. However, so far the success of NAS has not been enjoyed by low-level geometric vision tasks such as stereo matching. This is partly due to the fact that state-of-the-art deep stereo matching networks, designed by humans, are already sheer in size. Directly applying the NAS to such massive structures is computationally prohibitive based on the currently available mainstream computing resources. In this paper, we propose the first \emph{end-to-end} hierarchical NAS framework for deep stereo matching by incorporating task-specific human knowledge into the neural architecture search framework. Specifically, following the gold standard pipeline for deep stereo matching (\ie, feature extraction -- feature volume construction and dense matching), we optimize the architectures of the entire pipeline jointly. Extensive experiments show that our searched network outperforms all state-of-the-art deep stereo matching architectures and is ranked at the top 1 accuracy on KITTI stereo 2012, 2015, and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset with a substantial improvement on the size of the network and the speed of inference. Code available at https://github.com/XuelianCheng/LEAStereo

16

PyGlove: Symbolic Programming for Automated Machine Learning. Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficient NAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic.

17

Theory-Inspired Path-Regularized Differential Network Architecture Search. Despite its high search efficiency, differential architecture search (DARTS) often selects network architectures with dominated skip connections which lead to performance degradation. However, theoretical understandings on this issue remain absent, hindering the development of more advanced methods in a principled way. In this work, we solve this problem by theoretically analyzing the effects of various types of operations, e.g. convolution, skip connection and zero operation, to the network optimization. We prove that the architectures with more skip connections can converge faster than the other candidates, and thus are selected by DARTS. This result, for the first time, theoretically and explicitly reveals the impact of skip connections to fast network optimization and its competitive advantage over other types of operations in DARTS. Then we propose a theory-inspired path-regularized DARTS that consists of two key modules: (i) a differential group-structured sparse binary gate introduced for each operation to avoid unfair competition among operations, and (ii) a path-depth-wise regularization used to incite search exploration for deep architectures that often converge slower than shallow ones as shown in our theory and are not well explored during search. Experimental results on image classification tasks validate its advantages. Codes and models will be released.

18

BRP-NAS: Prediction-based NAS using GCNs. Neural architecture search (NAS) enables researchers to automatically explore broad design spaces in order to improve efficiency of neural networks. This efficiency is especially important in the case of on-device deployment, where improvements in accuracy should be balanced out with computational demands of a model. In practice, performance metrics of model are computationally expensive to obtain. Previous work uses a proxy (e.g., number of operations) or a layer-wise measurement of neural network layers to estimate end-to-end hardware performance but the imprecise prediction diminishes the quality of NAS. To address this problem, we propose BRP-NAS, an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN). What is more, we investigate prediction quality on different metrics and show that sample efficiency of the predictor-based NAS can be improved by considering binary relations of models and an iterative data selection strategy. We show that our proposed method outperforms all prior methods on NAS-Bench-101, NAS-Bench-201 and DARTS. Finally, to raise awareness of the fact that accurate latency estimation is not a trivial task, we release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices

19

Adapting Neural Architectures Between Domains. Neural architecture search (NAS) has demonstrated impressive performance in automatically designing high-performance neural networks. The power of deep neural networks is to be unleashed for analyzing a large volume of data (e.g. ImageNet), but the architecture search is often executed on another smaller dataset (e.g. CIFAR-10) to finish it in a feasible time. However, it is hard to guarantee that the optimal architecture derived on the proxy task could maintain its advantages on another more challenging dataset. This paper aims to improve the generalization of neural architectures via domain adaptation. We analyze the generalization bounds of the derived architecture and suggest its close relations with the validation error and the data distribution distance on both domains. These theoretical analyses lead to AdaptNAS, a novel and principled approach to adapt neural architectures between domains in NAS. Our experimental evaluation shows that only a small part of ImageNet will be sufficient for AdaptNAS to extend its architecture success to the entire ImageNet and outperform state-of-the-art comparison algorithms.

20

Statistical Active Learning Algorithms. We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns (1993). We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of uncorrelated" noise. The complexity of the resulting algorithms has information-theoretically optimal quadratic dependence on $1/(1-2\eta)$, where $\eta$ is the noise rate. We demonstrate the power of our framework by showing that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first known computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error $\epsilon$ over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case."

21

Active Inference in Concept Learning. People are active experimenters, not just passive observers, constantly seeking new information relevant to their goals. A reasonable approach to active information gathering is to ask questions and conduct experiments that maximize the expected information gain, given current beliefs (Fedorov 1972, MacKay 1992, Oaksford & Chater 1994). In this paper we present results on an exploratory experiment designed to study people's active information gathering behavior on a concept task (Tenenbaum 2000). The results of the experiment are analyzed in terms of the expected information gain of the questions asked by subjects.

22

Adaptive Active Hypothesis Testing under Limited Information. We consider the problem of active sequential hypothesis testing where a Bayesian decision maker must infer the true hypothesis from a set of hypotheses. The decision maker may choose for a set of actions, where the outcome of an action is corrupted by independent noise. In this paper we consider a special case where the decision maker has limited knowledge about the distribution of observations for each action, in that only a binary value is observed. Our objective is to infer the true hypothesis with low error, while minimizing the number of action sampled. Our main results include the derivation of a lower bound on sample size for our system under limited knowledge and the design of an active learning policy that matches this lower bound and outperforms similar known algorithms.

23

Active Information Retrieval. In classical large information retrieval systems, the system responds to a user initiated query with a list of results ranked by relevance. The users may further refine their query as needed. This process may result in a lengthy correspondence without conclusion. We propose an alternative active learning approach, where the sys(cid:173) tem responds to the initial user's query by successively probing the user for distinctions at multiple levels of abstraction. The system's initiated queries are optimized for speedy recovery and the user is permitted to respond with multiple selections or may reject the query. The information is in each case unambiguously incorporated by the system and the subsequent queries are adjusted to minimize the need for further exchange. The system's initiated queries are subject to resource constraints pertaining to the amount of infor(cid:173) mation that can be presented to the user per iteration.

24

Latent Structured Active Learning. In this paper we present active learning algorithms in the context of structured prediction problems. To reduce the amount of labeling necessary to learn good models, our algorithms only label subsets of the output. To this end, we query examples using entropies of local marginals, which are a good surrogate for uncertainty. We demonstrate the effectiveness of our approach in the task of 3D layout prediction from single images, and show that good models are learned when labeling only a handful of random variables. In particular, the same performance as using the full training set can be obtained while only labeling ~10\% of the random variables.

25

Buy-in-Bulk Active Learning. In many practical applications of active learning, it is more cost-effective to request labels in large batches, rather than one-at-a-time. This is because the cost of labeling a large batch of examples at once is often sublinear in the number of examples in the batch. In this work, we study the label complexity of active learning algorithms that request labels in a given number of batches, as well as the tradeoff between the total number of queries and the number of rounds allowed. We additionally study the total cost sufficient for learning, for an abstract notion of the cost of requesting the labels of a given number of examples at once. In particular, we find that for sublinear cost functions, it is often desirable to request labels in large batches (i.e., buying in bulk); although this may increase the total number of labels requested, it reduces the total cost required for learning.

26

Faster Rates in Regression via Active Learning. This paper presents a rigorous statistical analysis characterizing regimes in which active learning significantly outperforms classical passive learning. Active learning algorithms are able to make queries or select sample locations in an online fashion, depending on the results of the previous queries. In some regimes, this extra flexibility leads to significantly faster rates of error decay than those possible in classical passive learning settings. The nature of these regimes is explored by studying fundamental performance limits of active and passive learning in two illustrative nonparametric function classes. In addition to examining the theoretical potential of active learning, this paper describes a practical algorithm capable of exploiting the extra flexibility of the active setting and provably improving upon the classical passive techniques. Our active learning theory and methods show promise in a number of applications, including field estimation using wireless sensor networks and fault line detection.

27

Lower Bounds for Passive and Active Learning. We develop unified information-theoretic machinery for deriving lower bounds for passive and active learning schemes. Our bounds involve the so-called Alexander's capacity function. The supremum of this function has been recently rediscovered by Hanneke in the context of active learning under the name of "disagreement coefficient." For passive learning, our lower bounds match the upper bounds of Gine and Koltchinskii up to constants and generalize analogous results of Massart and Nedelec. For active learning, we provide first known lower bounds based on the capacity function rather than the disagreement coefficient.

28

Optimal Decision Tree with Noisy Outcomes. A fundamental task in active learning involves performing a sequence of tests to identify an unknown hypothesis that is drawn from a known distribution. This problem, known as optimal decision tree induction, has been widely studied for decades and the asymptotically best-possible approximation algorithm has been devised for it. We study a generalization where certain test outcomes are noisy, even in the more general case when the noise is persistent, i.e., repeating the test on the scenario gives the same noisy output, disallowing simple repetition as a way to gain confidence. We design new approximation algorithms for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the adaptive setting where the test sequence depends on the outcomes of prior tests. Previous work in the area assumed at most a constant number of noisy outcomes per test and per scenario and provided approximation ratios that were problem dependent (such as the minimum probability of a hypothesis). Our new approximation algorithms provide guarantees that are nearly best-possible and work for the general case of a large number of noisy outcomes per test or per hypothesis where the performance degrades smoothly with this number. Our results adapt and generalize methods used for submodular ranking and stochastic set cover. We evaluate the performance of our algorithms on two natural applications with noise: toxic chemical identification and active learning of linear classifiers. Despite our logarithmic theoretical approximation guarantees, our methods give solutions with cost very close to the information theoretic minimum, demonstrating the effectiveness of our methods.

29

Active Regression by Stratification. We propose a new active learning algorithm for parametric linear regression with random design. We provide finite sample convergence guarantees for general distributions in the misspecified model. This is the first active learner for this setting that provably can improve over passive learning. Unlike other learning settings (such as classification), in regression the passive learning rate of O(1/epsilon) cannot in general be improved upon. Nonetheless, the so-called `constant' in the rate of convergence, which is characterized by a distribution-dependent risk, can be improved in many cases. For a given distribution, achieving the optimal risk requires prior knowledge of the distribution. Following the stratification technique advocated in Monte-Carlo function integration, our active learner approaches a the optimal risk using piecewise constant approximations.

30

Convergence Rates of Active Learning for Maximum Likelihood Estimation. An active learner is given a class of models, a large set of unlabeled examples, and the ability to interactively query labels of a subset of these examples; the goal of the learner is to learn a model in the class that fits the data well. Previous theoretical work has rigorously characterized label complexity of active learning, but most of this work has focused on the PAC or the agnostic PAC model. In this paper, we shift our attention to a more general setting -- maximum likelihood estimation. Provided certain conditions hold on the model class, we provide a two-stage active learning algorithm for this problem. The conditions we require are fairly general, and cover the widely popular class of Generalized Linear Models, which in turn, include models for binary and multi-class classification, regression, and conditional random fields. We provide an upper bound on the label requirement of our algorithm, and a lower bound that matches it up to lower order terms. Our analysis shows that unlike binary classification in the realizable case, just a single extraround of interaction is sufficient to achieve near-optimal performance in maximum likelihood estimation. On the empirical side, the recent work in (Gu et al. 2012) and (Gu et al. 2014) (on active linear and logistic regression) shows the promise of this approach.

31

Online Active Learning with Surrogate Loss Functions. We derive a novel active learning algorithm in the streaming setting for binary classification tasks. The algorithm leverages weak labels to minimize the number of label requests, and trains a model to optimize a surrogate loss on a resulting set of labeled and weak-labeled points. Our algorithm jointly admits two crucial properties: theoretical guarantees in the general agnostic setting and a strong empirical performance. Our theoretical analysis shows that the algorithm attains favorable generalization and label complexity bounds, while our empirical study on 18 real-world datasets demonstrate that the algorithm outperforms standard baselines, including the Margin Algorithm, or Uncertainty Sampling, a high-performing active learning algorithm favored by practitioners.

32

A rational decision making framework for inhibitory control. Intelligent agents are often faced with the need to choose actions with uncertain consequences, and to modify those actions according to ongoing sensory processing and changing task demands. The requisite ability to dynamically modify or cancel planned actions is known as inhibitory control in psychology. We formalize inhibitory control as a rational decision-making problem, and apply to it to the classical stop-signal task. Using Bayesian inference and stochastic control tools, we show that the optimal policy systematically depends on various parameters of the problem, such as the relative costs of different action choices, the noise level of sensory inputs, and the dynamics of changing environmental demands. Our normative model accounts for a range of behavioral data in humans and animals in the stop-signal task, suggesting that the brain implements statistically optimal, dynamically adaptive, and reward-sensitive decision-making in the context of inhibitory control problems.

33

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System. Computational level explanations based on optimal feedback control with signal-dependent noise have been able to account for a vast array of phenomena in human sensorimotor behavior. However, commonly a cost function needs to be assumed for a task and the optimality of human behavior is evaluated by comparing observed and predicted trajectories. Here, we introduce inverse optimal control with signal-dependent noise, which allows inferring the cost function from observed behavior. To do so, we formalize the problem as a partially observable Markov decision process and distinguish between the agent’s and the experimenter’s inference problems. Specifically, we derive a probabilistic formulation of the evolution of states and belief states and an approximation to the propagation equation in the linear-quadratic Gaussian problem with signal-dependent noise. We extend the model to the case of partial observability of state variables from the point of view of the experimenter. We show the feasibility of the approach through validation on synthetic data and application to experimental data. Our approach enables recovering the costs and benefits implicit in human sequential sensorimotor behavior, thereby reconciling normative and descriptive approaches in a computational framework.

Sample Response

API Request
import cohere
co = cohere.Client('{apiKey}')
response = co.embed(
model='large',
texts=["On Kernel-Target Alignment. We describe a family of global optimization procedures that automatically decompose optimization problems into smaller loosely coupled problems, then combine the solutions of these with message passing algorithms. We show empirically that these methods excel in avoiding local minima and produce better solutions with fewer function evaluations than existing global optimization methods. To develop these methods, we introduce a notion of coupling between variables of optimization that generalizes the notion of coupling that arises from factoring functions into terms that involve small subsets of the variables. It therefore subsumes the notion of independence between random variables in statistics, sparseness of the Hessian in nonlinear optimization, and the generalized distributive law. Despite being more general, this notion of coupling is easier to verify empirically -- making structure estimation easy -- yet it allows us to migrate well-established inference methods on graphical models to the setting of global optimization.", "On the Convergence of Prior-Guided Zeroth-Order Optimization Algorithms. Zeroth-order (ZO) optimization is widely used to handle challenging tasks, such as query-based black-box adversarial attacks and reinforcement learning. Various attempts have been made to integrate prior information into the gradient estimation procedure based on finite differences, with promising empirical results. However, their convergence properties are not well understood. This paper makes an attempt to fill up this gap by analyzing the convergence of prior-guided ZO algorithms under a greedy descent framework with various gradient estimators. We provide a convergence guarantee for the prior-guided random gradient-free (PRGF) algorithms. Moreover, to further accelerate over greedy descent methods, we present a new accelerated random search (ARS) algorithm that incorporates prior information, together with a convergence analysis. Finally, our theoretical results are confirmed by experiments on several numerical benchmarks as well as adversarial attacks.", "Communication Complexity of Distributed Convex Learning and Optimization. We study the fundamental limits to communication-efficient distributed methods for convex learning and optimization, under different assumptions on the information available to individual machines, and the types of functions considered. We identify cases where existing algorithms are already worst-case optimal, as well as cases where room for further improvement is still possible. Among other things, our results indicate that without similarity between the local objective functions (due to statistical data similarity or otherwise) many communication rounds may be required, even if the machines have unbounded computational power.", "Straggler Mitigation in Distributed Optimization Through Data Encoding. Slow running or straggler tasks can significantly reduce computation speed in distributed computation. Recently, coding-theory-inspired approaches have been applied to mitigate the effect of straggling, through embedding redundancy in certain linear computational steps of the optimization algorithm, thus completing the computation without waiting for the stragglers. In this paper, we propose an alternate approach where we embed the redundancy directly in the data itself, and allow the computation to proceed completely oblivious to encoding. We propose several encoding schemes, and demonstrate that popular batch algorithms, such as gradient descent and L-BFGS, applied in a coding-oblivious manner, deterministically achieve sample path linear convergence to an approximate solution of the original problem, using an arbitrarily varying subset of the nodes at each iteration. Moreover, this approximation can be controlled by the amount of redundancy and the number of nodes used in each iteration. We provide experimental results demonstrating the advantage of the approach over uncoded and data replication strategies.", "Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods. We consider derivative-free algorithms for stochastic optimization problems that use only noisy function values rather than gradients, analyzing their finite-sample convergence rates. We show that if pairs of function values are available, algorithms that use gradient estimates based on random perturbations suffer a factor of at most $\sqrt{\dim}$ in convergence rate over traditional stochastic gradient methods, where $\dim$ is the dimension of the problem. We complement our algorithmic development with information-theoretic lower bounds on the minimax convergence rate of such problems, which show that our bounds are sharp with respect to all problem-dependent quantities: they cannot be improved by more than constant factors.", "Efficient Pure Exploration in Adaptive Round model. In the adaptive setting, many multi-armed bandit applications allow the learner to adaptively draw samples and adjust sampling strategy in rounds. In many real applications, not only the query complexity but also the round complexity need to be optimized. In this paper, we study both PAC and exact top-$k$ arm identification problems and design efficient algorithms considering both round complexity and query complexity. For PAC problem, we achieve optimal query complexity and use only $O(\log_{\frac{k}{\delta}}^*(n))$ rounds, which matches the lower bound of round complexity, while most of existing works need $\Theta(\log \frac{n}{k})$ rounds. For exact top-$k$ arm identification, we improve the round complexity factor from $\log n$ to $\log_{\frac{1}{\delta}}^*(n)$, and achieve near optimal query complexity. In experiments, our algorithms conduct far fewer rounds, and outperform state of the art by orders of magnitude with respect to query cost.", "On Top-k Selection in Multi-Armed Bandits and Hidden Bipartite Graphs. This paper discusses how to efficiently choose from $n$ unknowndistributions the $k$ ones whose means are the greatest by a certainmetric, up to a small relative error. We study the topic under twostandard settings---multi-armed bandits and hidden bipartitegraphs---which differ in the nature of the input distributions. In theformer setting, each distribution can be sampled (in the i.i.d.manner) an arbitrary number of times, whereas in the latter, eachdistribution is defined on a population of a finite size $m$ (andhence, is fully revealed after $m$ samples). For both settings, weprove lower bounds on the total number of samples needed, and proposeoptimal algorithms whose sample complexities match those lower bounds.", "MaxGap Bandit: Adaptive Algorithms for Approximate Ranking. This paper studies the problem of adaptively sampling from K distributions (arms) in order to identify the largest gap between any two adjacent means. We call this the MaxGap-bandit problem. This problem arises naturally in approximate ranking, noisy sorting, outlier detection, and top-arm identification in bandits. The key novelty of the MaxGap bandit problem is that it aims to adaptively determine the natural partitioning of the distributions into a subset with larger means and a subset with smaller means, where the split is determined by the largest gap rather than a pre-specified rank or threshold. Estimating an arm’s gap requires sampling its neighboring arms in addition to itself, and this dependence results in a novel hardness parameter that characterizes the sample complexity of the problem. We propose elimination and UCB-style algorithms and show that they are minimax optimal. Our experiments show that the UCB-style algorithms require 6-8x fewer samples than non-adaptive sampling to achieve the same error.", "A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond to important decisions about individual people (such as criminal recidivism prediction, lending, and sequential drug trials), exploration corresponds to explicitly sacrificing the well-being of one individual for the potential future benefit of others. In such settings, one might like to run a ``greedy\'\' algorithm, which always makes the optimal decision for the individuals at hand --- but doing this can result in a catastrophic failure to learn. In this paper, we consider the linear contextual bandit problem and revisit the performance of the greedy algorithm.", "Identifying Outlier Arms in Multi-Armed Bandit. We study a novel problem lying at the intersection of two areas: multi-armed bandit and outlier detection. Multi-armed bandit is a useful tool to model the process of incrementally collecting data for multiple objects in a decision space. Outlier detection is a powerful method to narrow down the attention to a few objects after the data for them are collected. However, no one has studied how to detect outlier objects while incrementally collecting data for them, which is necessary when data collection is expensive. We formalize this problem as identifying outlier arms in a multi-armed bandit. We propose two sampling strategies with theoretical guarantee, and analyze their sampling efficiency. Our experimental results on both synthetic and real data show that our solution saves 70-99% of data collection cost from baseline while having nearly perfect accuracy.", "Combinatorial Pure Exploration with Bottleneck Reward Function. In this paper, we study the Combinatorial Pure Exploration problem with the Bottleneck reward function (CPE-B) under the fixed-confidence (FC) and fixed-budget (FB) settings.In CPE-B, given a set of base arms and a collection of subsets of base arms (super arms) following a certain combinatorial constraint, a learner sequentially plays a base arm and observes its random reward, with the objective of finding the optimal super arm with the maximum bottleneck value, defined as the minimum expected reward of the base arms contained in the super arm.CPE-B captures a variety of practical scenarios such as network routing in communication networks, and its unique challenges fall on how to utilize the bottleneck property to save samples and achieve the statistical optimality. None of the existing CPE studies (most of them assume linear rewards) can be adapted to solve such challenges, and thus we develop brand-new techniques to handle them.For the FC setting, we propose novel algorithms with optimal sample complexity for a broad family of instances and establish a matching lower bound to demonstrate the optimality (within a logarithmic factor).For the FB setting, we design an algorithm which achieves the state-of-the-art error probability guarantee and is the first to run efficiently on fixed-budget path instances, compared to existing CPE algorithms. Our experimental results on the top-$k$, path and matching instances validate the empirical superiority of the proposed algorithms over their baselines.", "CryptoNAS: Private Inference on a ReLU Budget. Machine learning as a service has given raise to privacy concerns surrounding clients\' data and providers\' models and has catalyzed research in private inference (PI): methods to process inferences without disclosing inputs. Recently, researchers have adapted cryptographic techniques to show PI is possible, however all solutions increase inference latency beyond practical limits. This paper makes the observation that existing models are ill-suited for PI and proposes a novel NAS method, named CryptoNAS, for finding and tailoring models to the needs of PI. The key insight is that in PI operator latency cost are inverted: non-linear operations (e.g., ReLU) dominate latency, while linear layers become effectively free. We develop the idea of a ReLU budget as a proxy for inference latency and use CryptoNAS to build models that maximize accuracy within a given budget. CryptoNAS improves accuracy by 3.4% and latency by 2.4x over the state-of-the-art.", "Evaluating Efficient Performance Estimators of Neural Architectures. Conducting efficient performance estimations of neural architectures is a major challenge in neural architecture search (NAS). To reduce the architecture training costs in NAS, one-shot estimators (OSEs) amortize the architecture training costs by sharing the parameters of one supernet between all architectures. Recently, zero-shot estimators (ZSEs) that involve no training are proposed to further reduce the architecture evaluation cost. Despite the high efficiency of these estimators, the quality of such estimations has not been thoroughly studied. In this paper, we conduct an extensive and organized assessment of OSEs and ZSEs on five NAS benchmarks: NAS-Bench-101/201/301, and NDS ResNet/ResNeXt-A. Specifically, we employ a set of NAS-oriented criteria to study the behavior of OSEs and ZSEs, and reveal their biases and variances. After analyzing how and why the OSE estimations are unsatisfying, we explore how to mitigate the correlation gap of OSEs from three perspectives. Through our analysis, we give out suggestions for future application and development of efficient architecture performance estimators. Furthermore, the analysis framework proposed in our work could be utilized in future research to give a more comprehensive understanding of newly designed architecture performance estimators. The code is available at https://github.com/walkerning/aw_nas.", "Discovering Neural Wirings. The success of neural networks has driven a shift in focus from feature engineering to architecture engineering. However, successful networks today are constructed using a small and manually defined set of building blocks. Even in methods of neural architecture search (NAS) the network connectivity patterns are largely constrained. In this work we propose a method for discovering neural wirings. We relax the typical notion of layers and instead enable channels to form connections independent of each other. This allows for a much larger space of possible networks. The wiring of our network is not fixed during training -- as we learn the network parameters we also learn the structure itself. Our experiments demonstrate that our learned connectivity outperforms hand engineered and randomly wired networks. By learning the connectivity of MobileNetV1we boost the ImageNet accuracy by 10% at ~41M FLOPs. Moreover, we show that our method generalizes to recurrent and continuous time networks. Our work may also be regarded as unifying core aspects of the neural architecture search problem with sparse neural network learning. As NAS becomes more fine grained, finding a good architecture is akin to finding a sparse subnetwork of the complete graph. Accordingly, DNW provides an effective mechanism for discovering sparse subnetworks of predefined architectures in a single training run. Though we only ever use a small percentage of the weights during the forward pass, we still play the so-called initialization lottery with a combinatorial number of subnetworks. Code and pretrained models are available at https://github.com/allenai/dnw while additional visualizations may be found at https://mitchellnw.github.io/blog/2019/dnw/.", "Hierarchical Neural Architecture Search for Deep Stereo Matching. To reduce the human efforts in neural network design, Neural Architecture Search (NAS) has been applied with remarkable success to various high-level vision tasks such as classification and semantic segmentation. The underlying idea for the NAS algorithm is straightforward, namely, to allow the network the ability to choose among a set of operations (\eg convolution with different filter sizes), one is able to find an optimal architecture that is better adapted to the problem at hand. However, so far the success of NAS has not been enjoyed by low-level geometric vision tasks such as stereo matching. This is partly due to the fact that state-of-the-art deep stereo matching networks, designed by humans, are already sheer in size. Directly applying the NAS to such massive structures is computationally prohibitive based on the currently available mainstream computing resources. In this paper, we propose the first \emph{end-to-end} hierarchical NAS framework for deep stereo matching by incorporating task-specific human knowledge into the neural architecture search framework. Specifically, following the gold standard pipeline for deep stereo matching (\ie, feature extraction -- feature volume construction and dense matching), we optimize the architectures of the entire pipeline jointly. Extensive experiments show that our searched network outperforms all state-of-the-art deep stereo matching architectures and is ranked at the top 1 accuracy on KITTI stereo 2012, 2015, and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset with a substantial improvement on the size of the network and the speed of inference. Code available at https://github.com/XuelianCheng/LEAStereo", "PyGlove: Symbolic Programming for Automated Machine Learning. Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficient NAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic.", "Theory-Inspired Path-Regularized Differential Network Architecture Search. Despite its high search efficiency, differential architecture search (DARTS) often selects network architectures with dominated skip connections which lead to performance degradation. However, theoretical understandings on this issue remain absent, hindering the development of more advanced methods in a principled way. In this work, we solve this problem by theoretically analyzing the effects of various types of operations, e.g. convolution, skip connection and zero operation, to the network optimization. We prove that the architectures with more skip connections can converge faster than the other candidates, and thus are selected by DARTS. This result, for the first time, theoretically and explicitly reveals the impact of skip connections to fast network optimization and its competitive advantage over other types of operations in DARTS. Then we propose a theory-inspired path-regularized DARTS that consists of two key modules: (i) a differential group-structured sparse binary gate introduced for each operation to avoid unfair competition among operations, and (ii) a path-depth-wise regularization used to incite search exploration for deep architectures that often converge slower than shallow ones as shown in our theory and are not well explored during search. Experimental results on image classification tasks validate its advantages. Codes and models will be released.", "BRP-NAS: Prediction-based NAS using GCNs. Neural architecture search (NAS) enables researchers to automatically explore broad design spaces in order to improve efficiency of neural networks. This efficiency is especially important in the case of on-device deployment, where improvements in accuracy should be balanced out with computational demands of a model. In practice, performance metrics of model are computationally expensive to obtain. Previous work uses a proxy (e.g., number of operations) or a layer-wise measurement of neural network layers to estimate end-to-end hardware performance but the imprecise prediction diminishes the quality of NAS. To address this problem, we propose BRP-NAS, an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN). What is more, we investigate prediction quality on different metrics and show that sample efficiency of the predictor-based NAS can be improved by considering binary relations of models and an iterative data selection strategy. We show that our proposed method outperforms all prior methods on NAS-Bench-101, NAS-Bench-201 and DARTS. Finally, to raise awareness of the fact that accurate latency estimation is not a trivial task, we release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices", "Adapting Neural Architectures Between Domains. Neural architecture search (NAS) has demonstrated impressive performance in automatically designing high-performance neural networks. The power of deep neural networks is to be unleashed for analyzing a large volume of data (e.g. ImageNet), but the architecture search is often executed on another smaller dataset (e.g. CIFAR-10) to finish it in a feasible time. However, it is hard to guarantee that the optimal architecture derived on the proxy task could maintain its advantages on another more challenging dataset. This paper aims to improve the generalization of neural architectures via domain adaptation. We analyze the generalization bounds of the derived architecture and suggest its close relations with the validation error and the data distribution distance on both domains. These theoretical analyses lead to AdaptNAS, a novel and principled approach to adapt neural architectures between domains in NAS. Our experimental evaluation shows that only a small part of ImageNet will be sufficient for AdaptNAS to extend its architecture success to the entire ImageNet and outperform state-of-the-art comparison algorithms.", "Statistical Active Learning Algorithms. We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns (1993). We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of uncorrelated\" noise. The complexity of the resulting algorithms has information-theoretically optimal quadratic dependence on $1/(1-2\eta)$, where $\eta$ is the noise rate. We demonstrate the power of our framework by showing that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first known computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error $\epsilon$ over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case.\"", "Active Inference in Concept Learning. People are active experimenters, not just passive observers, constantly seeking new information relevant to their goals. A reasonable approach to active information gathering is to ask questions and conduct experiments that maximize the expected information gain, given current beliefs (Fedorov 1972, MacKay 1992, Oaksford & Chater 1994). In this paper we present results on an exploratory experiment designed to study people\'s active information gathering behavior on a concept task (Tenenbaum 2000). The results of the experiment are analyzed in terms of the expected information gain of the questions asked by subjects.", "Adaptive Active Hypothesis Testing under Limited Information. We consider the problem of active sequential hypothesis testing where a Bayesian decision maker must infer the true hypothesis from a set of hypotheses. The decision maker may choose for a set of actions, where the outcome of an action is corrupted by independent noise. In this paper we consider a special case where the decision maker has limited knowledge about the distribution of observations for each action, in that only a binary value is observed. Our objective is to infer the true hypothesis with low error, while minimizing the number of action sampled. Our main results include the derivation of a lower bound on sample size for our system under limited knowledge and the design of an active learning policy that matches this lower bound and outperforms similar known algorithms.", "Active Information Retrieval. In classical large information retrieval systems, the system responds to a user initiated query with a list of results ranked by relevance. The users may further refine their query as needed. This process may result in a lengthy correspondence without conclusion. We propose an alternative active learning approach, where the sys(cid:173) tem responds to the initial user\'s query by successively probing the user for distinctions at multiple levels of abstraction. The system\'s initiated queries are optimized for speedy recovery and the user is permitted to respond with multiple selections or may reject the query. The information is in each case unambiguously incorporated by the system and the subsequent queries are adjusted to minimize the need for further exchange. The system\'s initiated queries are subject to resource constraints pertaining to the amount of infor(cid:173) mation that can be presented to the user per iteration.", "Latent Structured Active Learning. In this paper we present active learning algorithms in the context of structured prediction problems. To reduce the amount of labeling necessary to learn good models, our algorithms only label subsets of the output. To this end, we query examples using entropies of local marginals, which are a good surrogate for uncertainty. We demonstrate the effectiveness of our approach in the task of 3D layout prediction from single images, and show that good models are learned when labeling only a handful of random variables. In particular, the same performance as using the full training set can be obtained while only labeling ~10\% of the random variables.", "Buy-in-Bulk Active Learning. In many practical applications of active learning, it is more cost-effective to request labels in large batches, rather than one-at-a-time. This is because the cost of labeling a large batch of examples at once is often sublinear in the number of examples in the batch. In this work, we study the label complexity of active learning algorithms that request labels in a given number of batches, as well as the tradeoff between the total number of queries and the number of rounds allowed. We additionally study the total cost sufficient for learning, for an abstract notion of the cost of requesting the labels of a given number of examples at once. In particular, we find that for sublinear cost functions, it is often desirable to request labels in large batches (i.e., buying in bulk); although this may increase the total number of labels requested, it reduces the total cost required for learning.", "Faster Rates in Regression via Active Learning. This paper presents a rigorous statistical analysis characterizing regimes in which active learning significantly outperforms classical passive learning. Active learning algorithms are able to make queries or select sample locations in an online fashion, depending on the results of the previous queries. In some regimes, this extra flexibility leads to significantly faster rates of error decay than those possible in classical passive learning settings. The nature of these regimes is explored by studying fundamental performance limits of active and passive learning in two illustrative nonparametric function classes. In addition to examining the theoretical potential of active learning, this paper describes a practical algorithm capable of exploiting the extra flexibility of the active setting and provably improving upon the classical passive techniques. Our active learning theory and methods show promise in a number of applications, including field estimation using wireless sensor networks and fault line detection.", "Lower Bounds for Passive and Active Learning. We develop unified information-theoretic machinery for deriving lower bounds for passive and active learning schemes. Our bounds involve the so-called Alexander\'s capacity function. The supremum of this function has been recently rediscovered by Hanneke in the context of active learning under the name of \"disagreement coefficient.\" For passive learning, our lower bounds match the upper bounds of Gine and Koltchinskii up to constants and generalize analogous results of Massart and Nedelec. For active learning, we provide first known lower bounds based on the capacity function rather than the disagreement coefficient.", "Optimal Decision Tree with Noisy Outcomes. A fundamental task in active learning involves performing a sequence of tests to identify an unknown hypothesis that is drawn from a known distribution. This problem, known as optimal decision tree induction, has been widely studied for decades and the asymptotically best-possible approximation algorithm has been devised for it. We study a generalization where certain test outcomes are noisy, even in the more general case when the noise is persistent, i.e., repeating the test on the scenario gives the same noisy output, disallowing simple repetition as a way to gain confidence. We design new approximation algorithms for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the adaptive setting where the test sequence depends on the outcomes of prior tests. Previous work in the area assumed at most a constant number of noisy outcomes per test and per scenario and provided approximation ratios that were problem dependent (such as the minimum probability of a hypothesis). Our new approximation algorithms provide guarantees that are nearly best-possible and work for the general case of a large number of noisy outcomes per test or per hypothesis where the performance degrades smoothly with this number. Our results adapt and generalize methods used for submodular ranking and stochastic set cover. We evaluate the performance of our algorithms on two natural applications with noise: toxic chemical identification and active learning of linear classifiers. Despite our logarithmic theoretical approximation guarantees, our methods give solutions with cost very close to the information theoretic minimum, demonstrating the effectiveness of our methods.", "Active Regression by Stratification. We propose a new active learning algorithm for parametric linear regression with random design. We provide finite sample convergence guarantees for general distributions in the misspecified model. This is the first active learner for this setting that provably can improve over passive learning. Unlike other learning settings (such as classification), in regression the passive learning rate of O(1/epsilon) cannot in general be improved upon. Nonetheless, the so-called `constant\' in the rate of convergence, which is characterized by a distribution-dependent risk, can be improved in many cases. For a given distribution, achieving the optimal risk requires prior knowledge of the distribution. Following the stratification technique advocated in Monte-Carlo function integration, our active learner approaches a the optimal risk using piecewise constant approximations.", "Convergence Rates of Active Learning for Maximum Likelihood Estimation. An active learner is given a class of models, a large set of unlabeled examples, and the ability to interactively query labels of a subset of these examples; the goal of the learner is to learn a model in the class that fits the data well. Previous theoretical work has rigorously characterized label complexity of active learning, but most of this work has focused on the PAC or the agnostic PAC model. In this paper, we shift our attention to a more general setting -- maximum likelihood estimation. Provided certain conditions hold on the model class, we provide a two-stage active learning algorithm for this problem. The conditions we require are fairly general, and cover the widely popular class of Generalized Linear Models, which in turn, include models for binary and multi-class classification, regression, and conditional random fields. We provide an upper bound on the label requirement of our algorithm, and a lower bound that matches it up to lower order terms. Our analysis shows that unlike binary classification in the realizable case, just a single extraround of interaction is sufficient to achieve near-optimal performance in maximum likelihood estimation. On the empirical side, the recent work in (Gu et al. 2012) and (Gu et al. 2014) (on active linear and logistic regression) shows the promise of this approach.", "Online Active Learning with Surrogate Loss Functions. We derive a novel active learning algorithm in the streaming setting for binary classification tasks. The algorithm leverages weak labels to minimize the number of label requests, and trains a model to optimize a surrogate loss on a resulting set of labeled and weak-labeled points. Our algorithm jointly admits two crucial properties: theoretical guarantees in the general agnostic setting and a strong empirical performance. Our theoretical analysis shows that the algorithm attains favorable generalization and label complexity bounds, while our empirical study on 18 real-world datasets demonstrate that the algorithm outperforms standard baselines, including the Margin Algorithm, or Uncertainty Sampling, a high-performing active learning algorithm favored by practitioners.", "A rational decision making framework for inhibitory control. Intelligent agents are often faced with the need to choose actions with uncertain consequences, and to modify those actions according to ongoing sensory processing and changing task demands. The requisite ability to dynamically modify or cancel planned actions is known as inhibitory control in psychology. We formalize inhibitory control as a rational decision-making problem, and apply to it to the classical stop-signal task. Using Bayesian inference and stochastic control tools, we show that the optimal policy systematically depends on various parameters of the problem, such as the relative costs of different action choices, the noise level of sensory inputs, and the dynamics of changing environmental demands. Our normative model accounts for a range of behavioral data in humans and animals in the stop-signal task, suggesting that the brain implements statistically optimal, dynamically adaptive, and reward-sensitive decision-making in the context of inhibitory control problems.", "Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System. Computational level explanations based on optimal feedback control with signal-dependent noise have been able to account for a vast array of phenomena in human sensorimotor behavior. However, commonly a cost function needs to be assumed for a task and the optimality of human behavior is evaluated by comparing observed and predicted trajectories. Here, we introduce inverse optimal control with signal-dependent noise, which allows inferring the cost function from observed behavior. To do so, we formalize the problem as a partially observable Markov decision process and distinguish between the agent’s and the experimenter’s inference problems. Specifically, we derive a probabilistic formulation of the evolution of states and belief states and an approximation to the propagation equation in the linear-quadratic Gaussian problem with signal-dependent noise. We extend the model to the case of partial observability of state variables from the point of view of the experimenter. We show the feasibility of the approach through validation on synthetic data and application to experimental data. Our approach enables recovering the costs and benefits implicit in human sequential sensorimotor behavior, thereby reconciling normative and descriptive approaches in a computational framework."])
print('Embeddings: {}'.format(response.embeddings))